
SUGGESTED SOLUTION TO TEST
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Problem 1. Let X be a normed space.
(i) State the Uniform Boundedness Theorem.
(ii) Show that if {xn}n≥1 is a weakly convergent sequence in X, then its limit is

unique and {xn}n≥1 is bounded.

Proof. (i) The uniform boundedness theorem states that: If F = {Tj}j∈J is a
family of bounded operators from a Banach space X to a normed space Y such
that sup

j∈J
∥Tjx∥Y < ∞ for every x ∈ X, then sup

j∈J
∥Tj∥X < ∞.

(ii) To prove the uniqueness, suppose {xn}n≥1 weakly converges to x, x′ ∈ X,
then for all f ∈ X∗, for arbitrary ε > 0, there exists N ∈ N such that for all n > N ,

|f(xn)− f(x)| < ε

2
, |f(xn)− f(x′)| < ε

2
,

therefore

|f(x− x′)| = |f(x)− f(x′)| ≤ |f(x)− f(xn)|+ |f(xn)− f(x′)| < ε,

which implies that f(x − x′) = 0 by the arbitrariness of ε, then by Hahn-Banach
theorem, we have x = x′.

To prove the boundedness, for x ∈ X, we de�ne x̂ ∈ X∗∗ by

x̂(f) := f(x),

for all f ∈ X∗, then x̂n ∈ X∗∗, moreover, by Hahn-Banach theorem, ∥x̂∥X∗∗ =
∥x∥X . Since {xn}n≥1 weakly converges to x, therefore for all f ∈ X∗, {|x̂n(f)|}n≥1

is bounded, by the uniform boundedness theorem, we have {∥x̂n∥X∗∗}n≥1 is bounded,
which implies that {∥xn∥X}n≥1 is bounded. □

Problem 2. Let X and Y be the normed spaces.
(i) Show that if Y is of �nite dimension, then a linear map T : X → Y is bounded

if and only if kerT is closed.
(ii) Show that every �nite dimensional subspace M of X is complemented, that

is, there is a closed subspace N of X so that X = M ⊕N .

Proof. (i) ⇒: Suppose the linear map T : X → Y is bounded, then T is also
continuous, therefore kerT is closed.

⇐: Suppose kerT is closed, then X/kerT with quotient norm is a normed space.
We de�ne the map T : X/kerT → Y by

T (x) := T (x),

for all x = x + kerT ∈ X/kerT. It is clear that T is well-de�ned. Since X/kerT
is isomorphic to a subspace of Y , therefore X/kerT is of �nite dimension, then
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T is continous. Let π : X → X/kerT denote the quotient map, since π is also
continuous, then by the composition,

T = T ◦ π,
T is continuous.

(ii) Assume M is of dimension m ∈ N. Let {ei}1≤i≤m be the basis of M , we
de�ne the linear functional on M by

ci(ej) :=

{
1, i = j,

0, i ̸= j.

By Hahn-Banach theorem, there exists c̃i ∈ X∗ such that

c̃i|M = ci, |c̃i(x)| ≤ ∥x∥X .

Let N =
m
∩
i=1

kerc̃i, we claim that X = M ⊕N . It is clear that for arbitrary x ∈ X,

we have

x =

m∑
i=1

c̃i(x)ei +

(
x−

m∑
i=1

c̃i(x)ei

)
:= xM + xN .

It is clear that xM ∈ M and xN ∈ N . Suppose x ∈ M ∩N , then on the one hand,
there exist constants λ1, · · · , λm such that

x =

m∑
i=1

λiei,

on the other hand,

c̃i(x) = 0, i = 1, · · · ,m,

therefore

λi = 0, i = 1, · · · ,m,

which implies that x = 0. □

Problem 3. Let V be a vector space over R. Let ρ : V → [0,∞) be a function on
V satisfying the condition: ρ(tx) = tρ(x) for all x ∈ V and for all t ≥ 0. Show that
a linear functional f : V → R is ρ-continuous on V if and only if there is C > 0
such that |f(x)| ≤ Cρ(x) for all x ∈ V . (In here, ρ-continuous means that for all
x0 ∈ V and for all ε > 0, there is δ > 0 such that |f(x) − f(x0)| < ε whenever
ρ(x− x0) < δ.)

Proof. ⇒: Suppose the linear functional f : V → R is ρ-continuous, then f is ρ-
continuous at x = 0, which implies that there exists δ > 0 such that for all y ∈ V
such that ρ(y) < δ,

|f(y)| < 1.

Let x ∈ V , we have

ρ

(
δ

2ρ(x)
x

)
=

δ

2
< δ,

therefore ∣∣∣∣f ( δ

2ρ(x)
x

)∣∣∣∣ < 1,

which implies that

|f(x)| < 2

δ
ρ(x).
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⇐: Suppose for all x ∈ V ,
|f(x)| ≤ Cρ(x).

Then for arbitrary ε > 0, and all y ∈ V such that ρ(y − x) < ε
C , we have

|f(x)− f(x)| ≤ Cρ(x− y) < ε,

which implies that f is ρ-continuous. □
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